Pages

Rabu, 08 Agustus 2012

Himpunan (matematika)



A.    Pengertian
Dalam matematika, himpunan adalah segala koleksi benda-benda tertentu yang dianggap sebagai satu kesatuan. Walaupun hal ini merupakan ide yang sederhana, tidak salah jika himpunan merupakan salah satu konsep penting dan mendasar dalam matematika modern, dan karenanya, studi mengenai struktur kemungkinan himpunan dan teori himpunan, sangatlah berguna. Teori himpunan, yang baru diciptakan pada akhir abad ke-19, sekarang merupakan bagian yang tersebar dalam pendidikan matematika yang mulai diperkenalkan bahkan sejak tingkat sekolah dasar. Teori ini merupakan bahasa untuk menjelaskan matematika modern. Teori himpunan dapat dianggap sebagai dasar yang membangun hampir semua aspek dari matematika dan merupakan sumber dari mana semua matematika diturunkan.
B.     RELASI HIMPUNAN

Subhimpunan

Dari suatu himpunan, misalnya A = {apel, jeruk, mangga, pisang}, dapat dibuat himpunan-himpunan lain yang elemen-elemennya adalah diambil dari himpunan tersebut.
·   {apel, jeruk}
·   {jeruk, pisang}
·   {apel, mangga, pisang}
Ketiga himpunan di atas memiliki sifat umum, yaitu setiap anggota himpunan itu adalah juga anggota himpunan A. Himpunan-himpunan ini disebut sebagai subhimpunan atau himpunan bagian dari A. Jadi dapat dirumuskan: B adalah himpunan bagian dari A jika setiap elemen B juga terdapat dalam A.
 B \subseteq A \equiv \forall_x \, x \in B 
\rightarrow x \in A
Kalimat di atas tetap benar untuk B himpunan kosong. Maka \varnothingjuga subhimpunan dari A.
Untuk sembarang himpunan A,
\varnothing \subseteq A
Definisi di atas juga mencakup kemungkinan bahwa himpunan bagian dari A adalah A sendiri.
Untuk sembarang himpunan A,
A \subseteq A
Istilah subhimpunan dari A biasanya berarti mencakup A sebagai subhimpunannya sendiri. Kadang-kadang istilah ini juga dipakai untuk menyebut himpunan bagian dari A, tetapi bukan A sendiri. Pengertian mana yang digunakan biasanya jelas dari konteksnya.Subhimpunan sejati dari A menunjuk pada subhimpunan dari A, tetapi tidak mencakup A sendiri.
B \subset A \equiv B \subseteq A \wedge B \neq
 A

Superhimpunan

Kebalikan dari subhimpunan adalah superhimpunan, yaitu himpunan yang lebih besar yang mencakup himpunan tersebut.
A \supseteq B \equiv B \subseteq A

Kesamaan dua himpunan

Himpunan A dan B disebut sama, jika setiap anggota A adalah anggota B, dan sebaliknya, setiap anggota B adalah anggota A.
A = B \equiv \forall_x\; x \in A 
\leftrightarrow x \in B
atau
A = B \equiv A \subseteq B \wedge B \subseteq 
A
Definisi di atas sangat berguna untuk membuktikan bahwa dua himpunan A dan B adalah sama. Pertama, buktikan dahulu A adalah subhimpunan B, kemudian buktikan bahwa B adalah subhimpunan A.

Himpunan Kuasa

Himpunan kuasa atau himpunan pangkat (power set) dari A adalah himpunan yang terdiri dari seluruh himpunan bagian dari A. Notasinya adalah \mathcal{P}(A).
Jika A = {apel, jeruk, mangga, pisang}, maka \mathcal{P}(A):
 { { },
   {apel}, {jeruk}, {mangga}, {pisang},
   {apel, jeruk}, {apel, mangga}, {apel, pisang},
   {jeruk, mangga}, {jeruk, pisang}, {mangga, pisang},
   {apel, jeruk, mangga}, {apel, jeruk, pisang}, {apel, mangga, pisang}, {jeruk, mangga, pisang},
   {apel, jeruk, mangga, pisang} }
Banyaknya anggota yang terkandung dalam himpunan kuasa dari A adalah 2 pangkat banyaknya anggota A.
|\mathcal{P}(A)| = 2^{|A|}
C.    MACAM-MACAM HIMPUNAN
a. Himpunan Kosong Himpunan kosong yaitu himpunan yang tidak mempunyai satupun elemen atau himpunan dengan kardinal = 0. Notasinya Ø atau { }.
Contoh: P = { x|x adalah akar-akar persamaan persamaan kuadrat x2 + 5x + 10 = 0 }, maka n(P) = 0
b.Himpunan Bagian Himpunan A dikatakan himpunan bagian dari himpuan B jika dan hanya jika setiap elemen A merupakan elemen dari B. dalam hal ini B dikatakan superset dari A. notasinya A B.
Contoh: Misalkan A = { 1, 2, 3 } dan B = {1, 2, 3, 4, 5}, maka A B.
c. Himpunan yang Sama Himpunan A dikatakan sama dengan himpunan B, jika dan hanya jika setiap elemen A merupakan elemen B dan sebaliknya. Notasinya A = B <—> A B.
Contoh: Jika A = { a, b, c } dan B = { c, a, b } maka A = B
d.Himpunan yang Ekivalen Himpunan A dikatakan ekivalen dengan himpunan B jika dan hanya jika cardinal dari kedua himpunan tersebut sama. Notasinya A ~ B <—> n(A) = n(B)
Contoh: Jika A = { 1, 2, 3,4 } dan B = { s, a, p, i } maka A ~ B sebab n(A) = n(B) = 4
e. Himpunan Saling Lepas  Dua buah himpunan A dan B dikatakan saling lepas jika keduanya tidak memiliki elemen yang sama. Notasi A // B.
Contoh: Jika A = { x|x є P, x < b =" {">
f. Himpunan Kuasa  Himpunan kuasa dari himpunan A adalah suatu himpunan yang elemennya merupakan semua himpunan bagiian dari A, termasuk himpunan kosong dari A itu sendiri. Notasinya P(A) atau 2A.
Contoh:Jika A = { 1, 2, }, maka P(A) = { { 1 },{ 2 }, { 1, 2, }, }
D.    OPERASI PADA HIMPUNAN
  1. Gabungan (union)                                    notasi : È

    Gabungan dari dua himpunan A dan B adalah himpunan yang terdiri dari semua elemen yang menjadi anggota A atau menjadi anggota B.

    A È B = { x | x Î A atau x Î B } contoh:
    A = {1,2,3}
    B = {0,2,4}
    Maka A È B = {0,1,2,3,4}

  2. Irisan (intersection)                                notasi : Ç

    Irisan dari dua himpunan A dan B adalah himpunan yang terdiri dari semua elemen persekutuan dari himpunan A dan B.

    A Ç B = { x | x Î A dan x Î B }
    contoh:
    A={1,2,3,4}
    B={3,4,5}
    maka A Ç B = {3,4}

  3. Selisih                                                         notasi : -

    Selisih antara dua himpunan A dan B adalah himpunan yang terdiri dari semua anggota A yang bukan anggota B.

    A - B = { x | x Î A dan x Ï B
contoh:
A = {1,2,3,4,5}
B = {2,4,6,7,10}
Maka A - B = {1,3,5}

                                                                           _ 
  1. Komplemen                                               notasi: A', Ac, A

    Komplemen dari himpunan A adalah himpunan yang terdiri dari semua anggota himpunan S yang bukan anggota A.

    A' = { x | x Î S dan x Ï A }
    contoh:
    S = {1,2,3,4,5,6,7,8,9,10}
    A = {1,2,3,4,5}
    Maka A' = {6,7,8,9,10}





Tidak ada komentar:

Posting Komentar